 Search for differences in the complex forming abilities of alkylimidazoles and making use of them

Benjamin LENARCICK – Higher School of the Environment Protection, Bydgoszcz; Elżbieta RADZYMŃSKA-LENARCICK – Faculty of Chemical Technology and Engineering, University of Technology and Life Sciences, Bydgoszcz

Please cited as: CHEMIK 2011, 65, 4, 237-242

An imidazole (1,3-diazole) ring is a building unit of compounds occurring in living organisms. The most common ones include histidine, histamine, pilocarpine, adenine, guanine, purine as well as vitamin H (biotine); the one named last was discovered by Uthar [1] in 1960. Some derivatives of imidazole, for instance pilocarpine, have been used as medicines [2].

Imidazole (Fig. 1), discovered in the 19th century by the Polish chemist Radziszewski [3], belongs to the family of five-membered heterocyclic bases called azoles. It is an aromatic compound with a planar ring structure. The pyridine nitrogen atom carries a lone electron pair which can bind hydrogen ions and form co-ordination bonds with metal ions.

![Fig. 1. The imidazole molecule](image)

Owing to the intermolecular hydrogen bonds, imidazole is a solid compound. In an aqueous solution it is a base (pKₐ 7.03), stronger than pyridine (pKₐ 5.31) but weaker than ammonia (pKₐ 9.63). At the same time, it is the strongest base among both the five- and six-membered heterocyclic compounds. In Pearson’s classification of soft and hard acids and bases, imidazole occupies an intermediate position, thus being capable of the formation of stable complexes with intermediate and soft Lewis bases. The basicity of the pyridine nitrogen atom can be varied by introducing appropriate substituents to the imidazole ring. All hydrogen atoms in the ring can be substituted, amongst others, by alkyls to give a homologous series of alkylimidazoles. It has been claimed recently [4] that basicity in particular homologous series of compounds increases linearly with an increasing number of carbon atoms in the alkyl substituents. Hence, the magnitude of the constant n is the number of carbon atoms in the alkyl substituent

for 1-alkylimidazoles \(pK_a = 0.0222 n + 7.165 \) (1)
for 1,2-dialkylimidazoles \(pK_a = 0.0432 n + 8.01 \) (2)
for 1,2,4-trialkylimidazoles \(pK_a = 0.0503 n + 8.46 \) (3)
for 1,2-dialkylimidazoles \(pK_a = 0.0279 n + 7.79 \) (4)
for 2-alkylimidazoles \(pK_a = 0.0349 n + 7.87 \) (5)

Trialkylimidazoles are the strongest bases while 1-alkylimidazoles are the weakest ones.

Paper [4] was of crucial importance because determination of the dissociation constants of alkylimidazoles paved a way to the investigation of complexion reactions of sparingly soluble alkylimidazoles with transition metal ions, irrespective of the position of the alkyls in the ring.

In the mid 1900’s, Rydberg developed the following equation, relating the partition constant of the complex (\(P \)) to the stability constant (\(\beta_l \)) and dissociation constant of the ligand:

\[D_w = \frac{C_M - C_M^s}{C_M^s} \] (6)

where \(C_M^s \) and \(C_M \) are metal ion concentrations before and after attaining a partition equilibrium, respectively.

\(D_w \) is a function of the free ligand concentration \([L] \) in the aqueous phase, which is calculated from Equation (8) on the basis of pH measurement.

In equilibrium conditions, when

\[L^{(w)} \leftrightarrow [L]^{(o)} \] (7)

(where \(L \) is the ligand molecule, \(w \) denotes the aqueous phase and \(o \) denotes the organic phase):

\[[L]^{(w)} = \frac{K_L[H^+]}{[H^+]_{w}} \] (8)

In the mid 1900’s, Rydberg developed the following equation, relating the partition constant of the complex (\(P \)) to the stability constant (\(\beta_l \)) and dissociation constant of the ligand:

\[D_w = \frac{P_M[L]^{(w)} + \beta_l[L]^{(w)} + \ldots + \beta_n[L]^{(w)}}{\sum_n C_n[L]^{(o)}} \] (10)

He demonstrated that the partition constants of the complexes could be determined from Equation (10) on the condition that the composition of the complex being extracted is known.

After rearrangement of Equation (10), a simpler form of the Rydberg’s equation is obtained:

\[D_w = 1 + \frac{\beta_l [L]^n}{P_M \beta_n} \] (11)

which can be used for the calculation of both the stability constants and partition constants for any extraction system, as has been demonstrated by Lenarcik et al. in a number of his papers [5÷17].

60 years of the Faculty of Chemical Technology and Engineering UT&LS in Bydgoszcz
In Equations (10) and (11) \(n \) denotes the number of the metal complex which is so much hydrophobic that it is extracted first.

The procedure for determination of the equilibrium constants from extraction experiments is a novelty in the literature. It soon became recommendable, especially for sparingly soluble ligands for which the stability constants of their metal complexes could not be determined by the routinely used potentiometric method. The newly developed partition method in a liquid-liquid system applied in the determination of equilibrium constants has been verified through the comparison of stability constants with those previously determined by the potentiometric method.

The stability constants of Co(II), Ni(II), Cu(II) and Zn(II) complexes with 1-alkylimidazoles are summarized in Table 1.

Table 1

<table>
<thead>
<tr>
<th>Ligand [references]</th>
<th>Me(^{2+})</th>
<th>log (\beta_1)</th>
<th>log (\beta_2)</th>
<th>log (\beta_3)</th>
<th>log (\beta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-dimethylimidazole [22]</td>
<td>Co(^{2+})</td>
<td>1.13</td>
<td>2.39</td>
<td>3.81</td>
<td>4.32</td>
</tr>
<tr>
<td>Ni(^{2+})</td>
<td>2.15</td>
<td>3.55</td>
<td>4.24</td>
<td>9.00</td>
<td></td>
</tr>
<tr>
<td>Zn(^{2+})</td>
<td>1.92</td>
<td>4.32</td>
<td>7.11</td>
<td>9.00</td>
<td></td>
</tr>
<tr>
<td>Cu(^{2+})</td>
<td>3.70</td>
<td>6.80</td>
<td>9.18</td>
<td>10.8</td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Ligand [references]</th>
<th>Me(^{2+})</th>
<th>log (\beta_1)</th>
<th>log (\beta_2)</th>
<th>log (\beta_3)</th>
<th>log (\beta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-dimethylimidazole [22]</td>
<td>Co(^{2+})</td>
<td>1.40</td>
<td>1.88</td>
<td>3.55</td>
<td>9.05</td>
</tr>
<tr>
<td>Ni(^{2+})</td>
<td>1.88</td>
<td>3.43</td>
<td>3.37</td>
<td>10.30</td>
<td></td>
</tr>
<tr>
<td>Zn(^{2+})</td>
<td>1.11</td>
<td>4.45</td>
<td>7.11</td>
<td>4.62</td>
<td></td>
</tr>
<tr>
<td>Cd(^{2+})</td>
<td>2.28</td>
<td>3.94</td>
<td>6.60</td>
<td>8.98</td>
<td></td>
</tr>
<tr>
<td>Cu(^{2+})</td>
<td>3.52</td>
<td>6.60</td>
<td>9.18</td>
<td>10.8</td>
<td></td>
</tr>
</tbody>
</table>

Alkyl substituents in \(\alpha \)-position to the pyridine nitrogen of the 1,3-diazole ring strengthen its basicity, though at the same time they inhibit the formation of metal complexes due to steric hindrance. The steric effect suppresses the stability constants especially of the octahedral species, for instance, those of Ni(II) [22]. It can also affect the structure of the coordination polyhedron. In the case of the Co(II), Zn(II) and Cu(II) complexes, steric hindrance due to a 2-alkyl substituent promotes mostly the formation of tetrahedral species in aqueous solution, which are considerably less sensitive to its influence [16, 22]. This phenomenon is of major importance, because tetrahedral species, being less hydrated than octahedral ones, are more readily extractable. This feature was used, for instance, for the separation of Co(II) and Ni(II).

Elongation of the 1-alkyl substituent contributes, first of all, to the enhancement of the hydrophobic properties of the complex, thus facilitating its extraction [5, 7, 8, 15].

Bearing in mind the hydrophobic effect associated with the length of the 1-alkyl substituent on the one hand and the steric effect due to a small substituent in either position 2- or 4- on the other hand, it is possible to suggest optimum conditions for the separation of Co(II) and Ni(II), Cu(II) and Co(II) as well as Zn(II), Cd(II) and some other cations, depending on the original composition of the solution.

To sum up, it can be stated that the metal complexes with substituted imidazoles are rather poorly represented in the literature even though they have interesting properties, in contrast to those of the complexes with other ligands, e.g., benzimidazole, pyrazole and pyridine. Those unique properties can be utilized for the separation of metals using various separation techniques. In particular, those properties which differentiate the complex-forming capacities of the alkylimidazoles are:
• steric effect, caused by substituents in either position 2- or 4-.
• hydrophobic effect, associated with the length of an alkyl substituent.

These features affect both the stability and structure of the coordination sphere of the metals, thus facilitating their separation.

Literature

Benjamin LENARCIK (Sc.D.) Professor, graduated from the Faculty of Chemistry, University of Gdańsk (1958). He obtained his doctorate degree at the Faculty of Mathematics-Physics-Chemistry M. Copernicus University in Torun (1965) and habilitation at the Faculty of Mathematics-Physics-Chemistry, University of Gdańsk (1978). He is professor of natural sciences (1988). Currently, he is employed at the School of the Environment Protection in Bydgoszcz.

Interests: coordination chemistry, solvent extraction of metals. The achievements of Professor have a total population of about 200 publications. He co-authored five textbooks. Creator of the International Winter School of Coordination Chemistry and organizer of the International Symposium Physico-chemical Methods of Separation “Ars Separatioria”. Editor-in-chief of the journal “Ars Separatoria”. He has supervised 10 Ph.D. students, postdoctoral developed 6 reviews. Decorated including Officer’s Cross of the Polish Renaissance (2003).

Elżbieta RADZYMINSKA-LENARCIK Ph.D., graduated from the Department of Chemistry of Lódź University (1978). She completed her Ph.D. degree in chemical technology (1999) from the Faculty of Chemical Technology of Poznań University of Technology. Currently, she is employed at the Faculty of Technology and Chemical Engineering, University of Technology and Life Sciences in Bydgoszcz.

Interests: separation of metals by solvent extraction. Author and co-author of 6 articles in foreign scientific journals, 5 articles in the Polish scientific and technical journals and 58 communications and posters at national and international conferences.

Translation into English by the Author